
Computer Graphics

Higher Technological Institute
Computer Science Department

Dr Osama Farouk
Dr Ayman Soliman

Dr Adel Khaled

Lecture Five
Graphics Output Primitives

Revision

Lecture One

3

Course Outlines

• Introduction to Computer Graphics .

• Overview of Graphics systems .

• Methods for producing basic picture components such as lines, circles, and
polygons.

• Algorithms for performing geometric transformations such as rotation and
scaling.

• Procedures for displaying views of two dimensional and three-dimensional
scenes.

4

Textbook

“Computer Graphics with OpenGL” , Third edition ,
Hearn - Baker

5

Introduction to Computer Graphics
What is computer graphics?

“Computer graphics is concerned with producing images and animations”

• Imaging = representing 2D images

• Modeling = representing 3D objects

• Rendering = constructing 2D images from 3D models

• Animation = simulating changes over time

6

Applications
• Entertainment

• Computer-aided Design

• Scientific Visualization

• Training

• Education

• e-Commerce

• Computer Art

• Image Processing

7

Image Processing

• Image processing is the modification of interpretation of existing pictures.
• Some IP applications:

➢ improving image quality,
➢ analyzing satellite photos of the earth and telescopic recordings of galactic

star distributions.
➢Medical applications: picture enhancements in tomography, simulations of

surgical operations, Ultrasonic and nuclear medical scanners.

8

Graphical User Interfaces (GUI)

The major components of a graphical interface are a window
manager, menus, and icons.

9

GUI: is a form of user interface that allows users to interact with electronic
devices through graphical icons and audio indicator such as primary notation,
instead of text-based user interfaces, typed command labels or text navigation

Overview of Graphics systems

We explore the basic features:

– Graphics hardware components.

• Video display devices.

• Input devices.

– Graphics software package.

10

Video Display Devices

1- Cathode Ray Tube (CRT)

متلك تعتمد أنبوبة الكاثود في عملها على الظاهرة الفيزيائية وهي أن مادة الفسفور تشع ضوء إذا تم قصفها بسيل من الالكترونات والتي ت

ة السرعة والجهد الكافيين لتحفيز الكترونات مادة الفسفور وإعطائها الطاقة اللازمة لكي تنطلق وتتحرر من حزمة التكافؤ إلى حزمة الطاق

.الأعلى، وأثناء عملية الانطلاق إلى حزمة أعلى فإنها تطلق مجموعة من الفوتونات والتي تمثل الضوء المنبعث

➢ Cathode Ray Tube (CRT) A beam of electrons (cathode rays), emitted
by an electron gun, passes through focusing and deflection systems
that direct the beam toward specified positions on the phosphor-
coated screen.

➢The phosphor then emits a small spot of light at each position
contacted by the electron beam.

➢ The most common method now employed for maintaining phosphor
glow is to redraw the picture repeatedly by quickly directing the electron
beam back over the same screen points.

11

Components:
1- Electron Gun
▪ Heating Element
▪ Cathode
▪ Control Grid
▪ Acceleration Anode
▪ Focusing Grid

2- Deflection Coils

12

2- Color CRT MONITOR

https://www.youtube.com/watch?v=cwkuCgYI91w

➢A CRT monitor displays color pictures by using a
combination of phosphors that emit different-colored
light.

➢The emitted light from the different phosphors merges
to form a single perceived color, which depends on the
particular set of phosphors that have been excited.

13

https://www.youtube.com/watch?v=cwkuCgYI91w

Flat-Panel Displays

➢ The term flat-panel display refers to a class of video devices that have reduced
volume, weight, and power requirements compared to a CRT.

➢ Some additional uses for flat-panel displays are as small TV monitors, calculator
screens, pocket video-game screens, laptop computer screens, armrest movie-
viewing stations on airlines, advertisement boards in elevator.

➢We can separate flat-panel displays into two categories: emissive displays and non-
emissive displays.

14

Flat-Panel Displays

➢ The emissive displays (or emitters) are devices
that convert electrical energy into light.
Plasma panels, thin-film electroluminescent
displays, and light-emitting diodes are
examples of emissive displays.

➢Non-emissive displays (or non-emitters) use
optical effects to convert sunlight or light from
some other source into graphics patterns. The
most important example of a non-emissive
flat-panel display is a liquid-crystal device LCD
screen.

15

Input Devices

Keyboard

Mouse

Joysticks

Image scanners

Touch panels

Light pens

Voice System

16

Graphics software

• Special purpose package

Examples of such applications include artist’s painting programs

• General programming packages

Provides a library of graphics functions that can be used in a programming
language such as C, C++ , open GL.

17

Graphics Functions

➢ Graphics output Primitives.

➢ Attributes Graphics Primitives.

➢ Geometric transformations.

➢ Viewing transformations.

➢ Many other operation.

18

OpenGL

http://www.openGL.org.

https://www.opengl.org/sdk/docs/man2/

OpenGl programming Guide Book:

http://www.glprogramming.com/red/

➢ OpenGL is a software interface to graphics hardware.

➢ OpenGL is designed as hardware-independent interface to be implemented on
many different hardware platforms.

➢ OpenGL doesn't provide high-level commands for describing models of three-
dimensional objects. Such commands might allow you to specify relatively
complicated shapes such as automobiles, parts of the body, airplanes, or
molecules.

➢ With OpenGL, you must build up your desired model from a small set of
geometric primitive -points, lines, and polygons.

19

http://www.opengl.org/
https://www.opengl.org/sdk/docs/man2/
http://www.glprogramming.com/red/

Download OpenGL

How to get OpenGL working in Visual Studios 2013

https://www.youtube.com/watch?v=3IjxgvZq9a0

20

https://www.youtube.com/watch?v=3IjxgvZq9a0

OpenGl, GLU and GLUT

• OpenGL: basic functions.

• GLU: OpenGl Utility library.

• GLUT: OpenGL Utility toolkit library.

GLU and GLUT: Handy functions for viewing and geometry.

21

Basic OpenGL Syntax

Function names in the OpenGL basic library

glBegin, glClear, glCopyPixel

Certain functions : for instance , a parameter name

GL_2D, GL_RGB, GL_POLYGON

Data type:

GLbyte, GLint, GLfloat, Glboolean

Related libraries

The OpenGL Utility (GLU): all GLU function names start
with glu

Header files

#include<windows.h>

#include<GL/gl.h>

#include<GL/glu.h>

If we used OpenGL Utility Toolkit(GLUT) we can replace the
header files with

#include <GL/GLUT.h>
22

Example
The display windows and line segment such as following Figure :

23

#include <Windows.h>
#include <GL\glew.h>
#include <GL\freeglut.h>
#include <iostream>
#include <GL/glut.h> // (or others, depending on the system in use)
void init (void){
glClearColor (1.0, 1.0, 1.0, 0.0); // Set display-window color to white.
glMatrixMode (GL_PROJECTION); // Set projection parameters.
gluOrtho2D (0.0, 200.0, 0.0, 150.0);}
void lineSegment (void){
glClear (GL_COLOR_BUFFER_BIT); // Clear display window.
glColor3f (1.0, 0.0, 0.0); // Set line segment color to red.
glBegin (GL_LINES);
glVertex2i (180, 15); // Specify line-segment geometry.
glVertex2i (10, 145);
glEnd ();
glFlush (); // Process all OpenGL routines as quickly as possible.}
void main (int argc, char** argv){
glutInit (&argc, argv); // Initialize GLUT.
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); // Set display mode.
glutInitWindowPosition (50, 100); // Set top-left display-window position.
glutInitWindowSize (400, 300); // Set display-window width and height.
glutCreateWindow ("An Example OpenGL Program"); // Create display window.
init (); // Execute initialization procedure.
glutDisplayFunc (lineSegment); // Send graphics to display window.
glutMainLoop (); // Display everything and wait.
}

24

Lecture two
Graphics Output Primitives

OpenGL Point Functions

• The default color for primitives is white and the default point size is equal
to the size of one screen pixel.

• The form for an OpenGL specification of a point position is

glBegin (GL_POINTS);

glVertex* (); //The coordinate values for a single position

glEnd ();

• In the following example, three equally spaced points are plotted along a
two-dimensional straight-line path with a slope of 2 (Figure). Coordinates
are given as integer pairs.

glBegin (GL_POINTS);

glVertex2i (50, 100);

glVertex2i (75, 150);

glVertex2i (100, 200);

glEnd ();

Alternatively, we could specify the coordinate values for the
preceding points in arrays such as

int point1 [] = {50, 100};

int point2 [] = {75, 150};

int point3 [] = {100, 200};

and call the OpenGL functions for plotting the three points as
glBegin (GL_POINTS);

glVertex2iv (point1);

glVertex2iv (point2);

glVertex2iv (point3);

glEnd ();

And here is an example of specifying two point positions in a
three dimensional world reference frame. In this case, we give
the coordinates as explicit floating-point values.

glBegin (GL_POINTS);

glVertex3f (-78.05, 909.72, 14.60);

glVertex3f (261.91, -5200.67, 188.33);

glEnd ();

Using this class definition, we could specify two- dimensional,
world-coordinate point position with the statements

wcPt2D pointPos;
pointPos.x = 120.75;
pointPos.y = 45.30;
glBegin (GL_POINTS);
glVertex2f (pointPos.x, pointPos.y);
glEnd ();

Look to pages in textbook “Computer Graphics with open GL”
Pages(88-89)

OpenGL LINE FUNCTIONS

The following code could generate the display shown in Figure.

glBegin (GL_LINES_STRIP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

glBegin (GL_LINES_LOOP);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

glBegin (GL_LINES);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

LINE-DRAWING ALGORITHMS

• A straight-line segment in a scene is defined by the coordinate
positions for the endpoints of the segment.

• The line color is loaded into the frame buffer at the
corresponding pixel coordinates.

• Stair-step effect (jaggies) produced when a line is generated
as a series of pixel positions.

Line Equations

The Cartesian slope-intercept equation for a straight line is

For any given interval along a line, we can compute
the corresponding interval By from Eq. 2 as

(1)

(2)

(3)

(4)

(5)

The Digital Differential Analyzer (DDA)

We consider first a line with positive slope,

If the slope is less than or equal to 1, we sample at unit x intervals (= 1) and
compute successive y values as

Subscript k takes integer values starting from 0, for the first point, and increases by
1 until the final endpoint is reached. Since m can be any real number between 0.0
and 1.0, each calculated y value must be rounded to the nearest integer
corresponding to a screen pixel position in the x column we are processing.

For lines with a positive slope greater than 1.0,we reverse the roles of x and y.
That is, we sample at unit y intervals (= 1) and calculate consecutive x values as

In this case, each computed x value is rounded to the nearest pixel position
along the current y scan line.

(6)

(7)

Equations 6 and 7 are based on the assumption that lines are to be processed
from the left endpoint to the right endpoint

If this processing is reversed, so that the starting endpoint is at the right, then either
we have =−1 and

or (when the slope is greater than 1) we have = −1 with

This algorithm is summarized in the following procedure, which accepts as input two
integer screen positions for the endpoints of a line segment . Horizontal and vertical
differences between the endpoint positions are assigned to parameters dx and dy.
The difference with the greater magnitude determines the value of parameter steps.
Starting with pixel position (x0, y0) ,we determine the offset needed at each step to
generate the next pixel position along the line path. We loop through this process
steps times. If the magnitude of dx is greater than the magnitude of dy and x0 is less
than xEnd, the values for the increments in the x and y directions are 1 and m,
respectively. If the greater change is in the x direction, but x0 is greater than xEnd,
then the decrements −1 and −m are used to generate each new point on the line.
Otherwise, we use a unit increment (or decrement) in the y direction and an x
increment (or decrement) of .

The digital differential analyzer (DDA) Algorithm: (textbook p94)

The digital differential analyzer (DDA) is a scan-conversion line algorithm
based on calculating either or , using Eq. 4 or Eq. 5.

EXAMPLE 1:

Apply The digital differential analyzer (DDA) Algorithm to compute

which pixels should be turned on to represent the line from (2,2) to (8,7)

EXAMPLE 2:

Apply The digital differential analyzer (DDA) Algorithm to compute

which pixels should be turned on to represent the line from (0,0) to (4,6)

EXAMPLE 3:

Apply The digital differential analyzer (DDA) Algorithm to compute

which pixels should be turned on to represent the line from (2,3) to (9,8)

Exercise :

Apply The digital differential analyzer (DDA) Algorithm to compute

which pixels should be turned on to represent the line from (20,10) to (30,18)

(x,y)yxY IncrementX Incrementkstepsdydx

(20,10)1020

(21,11)10.8210.81010810

(22,12)11.6221

(23,12)12.3232

(24,13)13.1243

(25,14)13.9254

(26,15)14.7265

(27,15)15.5276

(28,16)16.3287

(29,17)17.1298

(30,18)17.9309

Bresenham’s Line Algorithm

EXAMPLE :(textbook p136-137)

To illustrate the algorithm, we digitize the line with
endpoints (20, 10) and (30, 18).

Bresenham’s Line Algorithm

An implementation of Bresenham line drawing for slopes in the range 0
< m < 1.0 is given in the following procedure

Bresenham’s Line Algorithm

Lecture Three
Graphics Output Primitives

Circle drawing algorithms

Properties of Circles

A circle (Figure) is defined as the set of points that are all at a given distance r
from a center position .

(1)

(2)

But this is not the best method for generating a circle.
One problem with this approach is that it involves
considerable computation at each step. Moreover, the
spacing between plotted pixel positions is not uniform, as
demonstrated in Figure

Expressing the circle equation in parametric polar form yields the pair of equations

(3)

The shape of the circle is similar in each quadrant.
Therefore, if we determine the curve positions in
the first quadrant, we can generate the circle
section in the second quadrant of the xy plane by
noting that the two circle sections are symmetric
with respect to the y axis.
And circle sections in the third and fourth
quadrants can be obtained from sections in the
first and second quadrants by considering
symmetry about the x axis.

When a display is generated with these
equations using a fixed angular step size,
a circle is plotted with equally spaced
points along the circumference

Midpoint Circle Algorithm

The basic idea in this approach is to test the halfway position between two pixels to
determine if this midpoint is inside or outside the circle boundary.

To apply the midpoint method, we define a circle function as

(4)

(5)

The tests in (5) are performed for the mid positions between
pixels near the circle path at each sampling step.

Assuming that we have just plotted the pixel at , we next
need to determine whether the pixel at position or
the one at position is closer to the circle. Our
decision parameter is the circle function (4) evaluated at the
midpoint between these two pixels:

(6)

If , this midpoint is inside the circle and the pixel on scan line is closer to the
circle boundary. Otherwise, the midposition is outside or on the circle boundary, and
we select the pixel on scan line .
Successive decision parameters are obtained using incremental calculations.
We obtain a recursive expression for the next decision parameter by evaluating the
circle function at sampling position

(7)

or

where is either or , depending on the sign of .

Increments for obtaining are either (if is negative) or .
Evaluation of the terms and can also be done incrementally as

(8)

The initial decision parameter is obtained by evaluating the circle function at the start
position from eq.(6):

(9)

Midpoint Circle Algorithm

Example: Midpoint Circle Drawing

Given a circle radius r = 10, we demonstrate the midpoint circle
algorithm by determining positions along the circle octant in the
first quadrant from x = 0 to x = y. The initial value of the decision
parameter is

For the circle centered on the coordinate origin, the initial
point is (x0, y0) = (0, 10), and initial increment terms for
calculating the decision parameters are

Successive midpoint decision parameter values and the
corresponding coordinate positions along the circle path are listed
in the following table:

A plot of the generated pixel positions in the first quadrant is shown

Lecture Four
Graphics Output Primitives

ELLIPSE-GENERATING ALGORITHMS

Properties of Ellipses

A precise definition of an ellipse can be given in terms of the distances from
any point on the ellipse to two fixed positions, called the foci of the ellipse.

(1)

Expressing distances d1 and d2

The general ellipse equation in the form

The major axis is the straight-line segment extending from
one side of the ellipse to the other through the foci. The
minor axis spans the shorter dimension of the ellipse.

The equation for the ellipse

(1)

Using polar coordinates r and 𝜃

(2)

If rx > ry, the radius of the bounding circle is r = rx .
Otherwise, the bounding circle has radius r = ry.

As with the circle algorithm, symmetry considerations can be
used to reduce computations. An ellipse in standard position is
symmetric between quadrants, but, unlike a circle, it is not
symmetric between the two octants of a quadrant. Thus, we
must calculate pixel positions along the elliptical arc throughout
one quadrant, then use symmetry to obtain curve positions in
the remaining three quadrants

Midpoint Ellipse Algorithm
Given parameters rx , ry, and (xc , yc), we determine curve positions (x, y) for an ellipse
in standard position centered on the origin, then we shift all the points using a fixed
offset so that the ellipse is centered at (xc , yc). If we wish also to display the ellipse in
nonstandard position, we could rotate the ellipse about its center coordinates to
reorient the major and minor axes in the desired directions.
The midpoint ellipse method is applied throughout the first quadrant in two parts.

Regions 1 and 2 (Figure) can be processed in various ways.
We can start at position (0, ry) and step clockwise along the
elliptical path in the first quadrant, shifting from unit steps in
x to unit steps in y when the slope becomes less than -1.0.
Alternatively, we could start at (rx , 0) and select points in a
counterclockwise order, shifting from unit steps in y to unit
steps in x when the slope becomes greater than -1.0. With
parallel processors, we could calculate pixel positions in the
two regions simultaneously. As an example of a sequential
implementation of the midpoint algorithm, we take the start
position at (0, ry) and step along the ellipse path in clockwise
order throughout the first quadrant.

We define an ellipse function from Equation (2) with (xc , yc) = (0, 0) as

(3)

which has the following properties:

(4)

Starting at (0, ry), we take unit steps in the x direction until we reach the
boundary between region 1 and region 2. Then we switch to unit steps in the y
direction over the remainder of the curve in the first quadrant. At each step we
need to test the value of the slope of the curve. The ellipse slope is calculated
from Equation (3) as

(5)

At the boundary between region -1 and region 2
and

(6)

Therefore, we move out of region 1 whenever

The decision parameter (that is, the ellipse function 3) at this midpoint:

(7)

If p1k < 0, the midpoint is inside the ellipse and the pixel on scan line yk is closer to the
ellipse boundary. Otherwise, the midposition is outside or on the ellipse boundary, and
we select the pixel on scan line yk − 1.

At the next sampling position (xk+1 + 1 = xk + 2), the decision parameter for region 1 is
evaluated as

(8)

where yk+1 is either yk or yk − 1, depending on the sign of p1k.

Decision parameters are incremented by the following amounts:

(9)

At the initial position (0, ry), these two terms evaluate to

(10)

In region 1, the initial value of the decision parameter is obtained by evaluating the
ellipse function at the start position (x0, y0) = (0, ry):

(11)

Over region 2, we sample at unit intervals in the negative y direction, and the midpoint is now taken
between horizontal pixels at each step (Figure). For this region, the decision parameter is evaluated as

Given input ellipse parameters rx = 8 and ry = 6, we illustrate the steps in the midpoint
ellipse algorithm by determining raster positions along the ellipse path in the first
quadrant. Initial values and increments for the decision parameter calculations are

Example: Midpoint Ellipse Drawing (Textbook P114-115)

P2k

