Higher Technological Institute
Computer Science Department

Computer Graphics

Dr Osama Farouk
Dr Ayman Soliman
Dr Adel Khaled

Lecture Five
Graphics Output Primitives
Revision

Lecture One

Course Outlines

Introduction to Computer Graphics .

Overview of Graphics systems .

Methods for producing basic picture components such as lines, circles, and
polygons.

Algorithms for performing geometric transformations such as rotation and
scaling.

Procedures for displaying views of two dimensional and three-dimensional
scenes.

Textbook

“Computer Graphics with OpenGL” , Third edition,
Hearn - Baker

Introduction to Computer Graphics
What is computer graphics?

“Computer graphics is concerned with producing images and animations”
* Imaging = representing 2D images

* Modeling = representing 3D objects

 Rendering = constructing 2D images from 3D models

 Animation = simulating changes over time

Camera

®

View
Plane

Light
B

¥

3D Model 2D Image

Applications

Entertainment
Computer-aided Design
Scientific Visualization
Training

Education
e-Commerce
Computer Art

Image Processing

Image Processing

* Image processing is the modification of interpretation of existing pictures.
* Some IP applications:
» improving image quality,
» analyzing satellite photos of the earth and telescopic recordings of galactic
star distributions.
» Medical applications: picture enhancements in tomography, simulations of
surgical operations, Ultrasonic and nuclear medical scanners.

A Survey of Computer Graphics

Graphical User Interfaces (GUI)

The major components of a graphical interface are a window
manager, menus, and icons.

GUI: is a form of user interface that allows users to interact with electronic
devices through graphical icons and audio indicator such as primary notation,
instead of text-based user interfaces, typed command labels or text navigation

Overview of Graphics systems

We explore the basic features:
— Graphics hardware components.
* Video display devices.
* |Input devices.
— Graphics software package.

Video Display Devices
1- Cathode Ray Tube (CRT)

» Cathode Ray Tube (CRT) A beam of electrons (cathode rays), emitted
by an electron gun, passes through focusing and deflection systems
that direct the beam toward specified positions on the phosphor-
coated screen.

» The phosphor then emits a small spot of light at each position
contacted by the electron beam.

» The most common method now employed for maintaining phosphor
glow is to redraw the picture repeatedly by quickly directing the electron
beam back over the same screen points.

llias il 5 g SV (e Jann Lgda a3 13) ¢ guia il) giaadl) 3ala O 8 5 4 58l 5 el o Lelae 8 3 SN 4, gl aaiad
Al 4 ja) 8K A e ey paii g (3l S A 30U QB Lgitae) 5) sl Bale il g iU 5uiat] adlSll agall 5 de ol
Caxgiall ¢ guall Jiad ll g <53 sl (e A gana (3l Lgld el A ja) 3D dlee oL 5 ¢ oY)

Components:

1- Electron Gun

= Heating Element

Cathode
Control Grid
Acceleration Anode
Focusing Grid
2- Deflection Coils

Cathode Ray Tube (CRT)

g s 3l o AT cliLe) imelud

e s i e
T
!
Eed ?

X glak
Swea g alla ,'-"'| il g ity

2- Color CRT MONITOR

» A CRT monitor displays color pictures by using a
combination of phosphors that emit different-colored

||ght. rlj:'l;l"l',ll"
Luns
_ B
2% Selectior
--»1':-"»\ G
\ "—‘\\ Shadow Nask
> The emitted light from the different phosphors merges ;2% | -

to form a single perceived color, which depends onthe | 500™&. Bed | phosphor-Dot
particular set of phosphors that have been excited. YO Grees Blue. | M9

https://www.youtube.com/watch?v=cwkuCgY191w

Screen

https://www.youtube.com/watch?v=cwkuCgYI91w

Flat-Panel Displays

» The term flat-panel display refers to a class of video devices that have reduced
volume, weight, and power requirements compared to a CRT.

» Some additional uses for flat-panel displays are as small TV monitors, calculator
screens, pocket video-game screens, laptop computer screens, armrest movie-
viewing stations on airlines, advertisement boards in elevator.

» We can separate flat-panel displays into two categories: emissive displays and non-
emissive displays.

Flat-Panel Displays

» The emissive displays (or emitters) are devices
that convert electrical energy into light.
Plasma panels, thin-film electroluminescent
displays, and light-emitting diodes are
examples of emissive displays.

» Non-emissive displays (or non-emitters) use
optical effects to convert sunlight or light from
some other source into graphics patterns. The
most important example of a non-emissive
flat-panel display is a liquid-crystal device LCD
screen.

Keyboard
Mouse
Joysticks

Image scanners
Touch panels
Light pens
Voice System

Input Devices

Graphics software

* Special purpose package
Examples of such applications include artist’s painting programs

* General programming packages
Provides a library of graphics functions that can be used in a programming
language such as C, C++, open GL.

Graphics Functions

» Graphics output Primitives.

» Attributes Graphics Primitives.
» Geometric transformations.
» Viewing transformations.

» Many other operation.

Y VYV

OpenGL

OpenGL is a software interface to graphics hardware.

OpenGL is designed as hardware-independent interface to be implemented on
many different hardware platforms.

OpenGL doesn't provide high-level commands for describing models of three-
dimensional objects. Such commands might allow you to specify relatively
complicated shapes such as automobiles, parts of the body, airplanes, or
molecules.

With OpenGL, you must build up your desired model from a small set of
geometric primitive -points, lines, and polygons.

http://www.openGL.org.
https://www.opengl.org/sdk/docs/man2/

OpenGl programming Guide Book:
http://www.glprogramming.com/red/

http://www.opengl.org/
https://www.opengl.org/sdk/docs/man2/
http://www.glprogramming.com/red/

Download OpenGL

How to get OpenGL working in Visual Studios 2013

https://www.youtube.com/watch?v=3ljxgvZgq9a0

https://www.youtube.com/watch?v=3IjxgvZq9a0

OpenGl, GLU and GLUT

* OpenGL: basic functions.
* GLU: OpenGl Utility library.
 GLUT: OpenGL Utility toolkit library.

GLU and GLUT: Handy functions for viewing and geometry.

Basic OpenGL Syntax

Function names in the OpenGL basic library
glBegin, glClear, glCopyPixel
Certain functions : for instance , a parameter name
GL_2D, GL_RGB, GL_POLYGON
Data type:
GLbyte, GLint, GLfloat, Glboolean
Related libraries

The OpenGL Utility (GLU): all GLU function names start
with glu

Header files
#include<windows.h>
#include<GL/gl.h>
#include<GL/glu.h>

If we used OpenGL Utility Toolkit(GLUT) we can replace the
header files with

#include <GL/GLUT.h>

#include <Windows.h>

#include <GL\glew.h>

#include <GL\freeglut.h>

#include <iostream>

#include <GL/glut.h> // (or others, depending on the system in use)
void init (void){

glClearColor (1.0, 1.0, 1.0, 0.0); // Set display-window color to white.
glMatrixMode (GL_PROJECTION); // Set projection parameters.
gluOrtho2D (0.0, 200.0, 0.0, 150.0);}

void lineSegment (void){

glClear (GL_COLOR_BUFFER_BIT); // Clear display window.

glColor3f (1.0, 0.0, 0.0); // Set line segment color to red.

giBegin (GL_LINES);

glVertex2i (180, 15); // Specify line-segment geometry.

glVertex2i (10, 145);

glEnd ();

glFlush (); // Process all OpenGL routines as quickly as possible.}

void main (int argc, char** argv){

glutlnit (&argc, argv); // Initialize GLUT.

glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB); // Set display mode.
glutinitWindowPosition (50, 100); // Set top-left display-window position.
glutinitWindowsSize (400, 300); // Set display-window width and height.
glutCreateWindow ("An Example OpenGL Program"); // Create display window.
init (); // Execute initialization procedure.

glutDisplayFunc (lineSegment); // Send graphics to display window.
glutMainLoop (); // Display everything and wait.

}

Lecture two
Graphics Output Primitives

OpenGL Point Functions

The default color for primitives is white and the default point size is equal
to the size of one screen pixel.

The form for an OpenGL specification of a point position is
glBegin (GL_POINTS);
glVertex™® (); //The coordinate values for a single position
glEnd ();

In the following example, three equally spaced points are plotted along a
two-dimensional straight-line path with a slope of 2 (Figure). Coordinates
are given as integer pairs.

glBegin (GL_POINTS); y
glVertex2i (50, 100); 200+ :
glVertex2i (75, 150); 150 + ,
glVertex2i (100, 200); 100 o

glEnd (); 50+

50 100 150 X

Display of three point positions
generated with glBegin (GL_POINTS).

Alternatively, we could specify the coordinate values for the

preceding points in arrays such as
int pointl [] = {50, 100};
int point2 [] = {75, 150};
int point3 [] = {100, 200};

and call the OpenGL functions for plotting the three points as

glBegin (GL_POINTS);
glVertex2iv (pointl);
glVertex2iv (point2);
glVertex2iv (point3);
glEnd ();

And here is an example of specifying two point positions in a
three dimensional world reference frame. In this case, we give

the coordinates as explicit floating-point values.
glBegin (GL_POINTS);
glVertex3f (-78.05, 909.72, 14.60);
glVertex3f (261.91, -5200.67, 188.33);
glEnd ();

Using this class definition, we could specify two- dimensional,
world-coordinate point position with the statements

wcPt2D pointPos;

pointPos.x = 120.75;

pointPos.y = 45.30;

glBegin (GL_POINTS);

glVertex2f (pointPos.x, pointPos.y);
glEnd ();

Look to pages in textbook “Computer Graphics with open GL”

Pages(88-89)

OpenGL LINE FUNCTIONS

The following code could generate the display shown in Figure.

p3

p2 pd
(a)

glBegin (GL_LINES);
glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

p2 pd
(b)

glBegin (GL_LINES_STRIP);

glVertex2iv (p1);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

(c)

glBegin (GL_LINES_LOOP);
glVertex2iv (pl);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);

glEnd ();

LINE-DRAWING ALGORITHMS

* A straight-line segment in a scene is defined by the coordinate
positions for the endpoints of the segment.

* The line color is loaded into the frame buffer at the
corresponding pixel coordinates.

e Stair-step effect (jaggies) produced when a line is generated
as a series of pixel positions.

=

Line Equations Vead |-
o=t E b nl /

lfend — HD

m = (2)
Xend — X0 Line path
between endpoint positions
b=1yy—m-xg (3) (x0, 10) and (Yend, Yond)

For any given Xinterval 4x along a line, we can compute
the corresponding 4§y interval By from Eq. 2 as

The Cartesian slope-intercept equation for a straight line is

¥Yend T
i |
|
Yo 1+ I

Sy=m-ox () 0y

| 1 1 1 1 1 | -

T T T T T T T
X Xend

5'“' Straight-line
i segment with five sampling
—— (5) positions along the x axis

between ap and xand.

X
M

The Digital Differential Analyzer (DDA)

We consider first a line with positive slope,

If the slope is less than or equal to 1, we sample at unit x intervals x =1) and
compute successive y values as

Yirl = Wi + m (6)
Subscript k takes integer values starting from 0, for the first point, and increases by
1 until the final endpoint is reached. Since m can be any real number between 0.0
and 1.0, each calculated y value must be rounded to the nearest integer
corresponding to a screen pixel position in the x column we are processing.

For lines with a positive slope greater than 1.0,we reverse the roles of x and y.
That is, we sample at unit y intervals (dy = 1) and calculate consecutive x values as
1
Xkl = X+ — (7)
m
In this case, each computed x value is rounded to the nearest pixel position
along the current y scan line.

Equations 6 and 7 are based on the assumption that lines are to be processed
from the left endpoint to the right endpoint

If this processing is reversed, so that the starting endpoint is at the right, then either
we have éx=-1 and

el = Y — M

or (when the slope is greater than 1) we have 3y = -1 with

1
Xky1 = X — —
m
This algorithm is summarized in the following procedure, which accepts as input two
integer screen positions for the endpoints of a line segment . Horizontal and vertical
differences between the endpoint positions are assigned to parameters dx and dy.
The difference with the greater magnitude determines the value of parameter steps.
Starting with pixel position (x0, y0) ,we determine the offset needed at each step to
generate the next pixel position along the line path. We loop through this process
steps times. If the magnitude of dx is greater than the magnitude of dy and x0 is less
than xXEnd, the values for the increments in the x and y directions are 1 and m,
respectively. If the greater change is in the x direction, but x0 is greater than xEnd,
then the decrements -1 and -m are used to generate each new point on the line.
Otherwise, we use a unit increment (or decrement) in the y direction and an x
increment (or decrement) l

The digital differential analyzer (DDA) Algorithm: (textbook p94)

The digital differential analyzer (DDA) is a scan-conversion line algorithm
based on calculating either 0X ordy using Eqg. 4 or Eq. 5.

#include <stdlib.h> .
: + . Specifiad -
#include <math.h> 1 L
Az i 5 g 12
inline int round (const float a) (return int (a + 0.5);) _ ol
o
void lineDDA (int x0, int y0, int xEnd, int yEnd) —
("
int dx = xEnd - x0, dy = yEnd - y0, steps, k; B AR
float xIncrement, yIncrement, x = x0, y = y0; FIGURE3-8 A section
of a display screen where a
. s straight-line segment is to be
if (fabs (dx) > fabs (d}')}]:Imttzw:l,.~'~ta:tin£.:r'rl:~m1h-': i
steps = fabs (dx) : izel at column 10 on scan
ine 11.
else l

steps = fabs (dy);

xIncrement = float (dx) / float (steps);
yIncrement = float (dy) / float (steps): _=.r.,

— Specified —
setPixel (round (x), round (y)): J"'“ Yine Path
for (k = 0; k steps; k++) [48

x += xIncrement; 0| 51 | =2 -
y += yIncrement;
A section

setPixel (round (x), round (y)): ;
of a display screen where a

negative slope line segment is
) to be plotted, starting from

the pixel at column 5 on scan
lime 50,

[—

EXAMPLE 1:

Apply The digital differential analyzer (DDA) Algorithm to compute
which pixels should be turned on to represent the line from (2,2) to (8,7)

DDA- Digital Differential Analyser

This case is for slope (m) less than 1. Slope (m) =(7-1)/(8-1) = 6/7 .

S-1: x1=1; y1=1; x2=8; y2=7.

5-2: m=(7-1)/(8-1) = 6/7 which is less than 1.

S-3: As m (6/7) is less than 1 therefore X is increased and y is calculated.
S-4 : The step will be x1=x1+1 and y1=y1+6/7

5-5: The points genrated would be x1=1+1 and Y1=1+(5/7) == 1+0.9=>1.9=>gpprox 2. So X 1=2 and Y1=~

X1 Y1 Pixel Plotted
p1 2 2 2,2
p2 3 246/7=2.9 33
p3 4 29+6/7=38 4.4
pd s 3.8+ sg =47 -
p5 6 47+6/7=56 6.6
p6 |7 56+6/7=7.0 7.7

The algorithm will stop here as the x value has reached 7.

EXAMPLE 2:

Apply The digital differential analyzer (DDA) Algorithm to compute
which pixels should be turned on to represent the line from (0,0) to (4,6)

This case is for slope (m) greater than 1. Slope (m) =(6-0)/(4-0) = 6/4 .

S-1: x1=0; y1=0; x2=4; y2=6

5-2: m=(6-0)/(4-0) = 6/4 which is more than 1.

S-3: As m (6/4) is greater than 1 therefore y is increased and x is calculated.
S-4 : Now increase the value of y and calculate value of x.

» To calculate x, take line equation and find x, x2=x1+1/m

» The step will be y1=y1+1 and x1 =x1+1/(6/4) , After Simplification, Every time y1=y1+1 and x1=x1+4/6

Y1 X1 Pixel Plotted
p0 0 0 (0,0)
p1 1 X1= (0)+4/6=0.67 =1 (1.1)
p2 2 0.67+4/6=1.34 (1.2)
p3. 3 1.34+4/6=2.01 (2.3)
p4 |4 2.01+4/6=2.68 (3.4)
p5 |5 2.68+4/6=3.35 (3.5)

p6 6 3.35+4/6=4.02 (4.6)

EXAMPLE 3:

Apply The digital differential analyzer (DDA) Algorithm to compute
which pixels should be turned on to represent the line from (2,3) to (9,8)

S-1:x1=2, y1=3 and x2=9, y2=8.
S-2: Calculate Slope m =(8-3)/(9-2) = 5/7, which is less than 1.
S-3: Since mis less than one that means we would increase x and calculate y.

S-4: So new x would be equal to old x plus 1 ® and calculate y as newy = old y +m(slope). — Easy to understand, We
mean the following

x1=x1+1 and y1=y1+(5/7)

X1 Y1 Pixel Plotted

po 2 3 N 23
345/7 => 26/7 =>

p1 3 3.4
26/7=>3.71

p2 4 3.71+5/7=4.42 4,4

p3 5 4.42+5/7=5.13 5.5

p4 6 5.13+5/7=5.84 6.6

pS 7 584 +5/7 =655 7.7

p6 8 6.55+5/7=7.26 87

p7 9 7.26+5/7=7.97 9,8

The algorithm would stop here as we have reached the end point of the line (9.8)

Exercise :

Apply The digital differential analyzer (DDA) Algorithm to compute
which pixels should be turned on to represent the line from (20,10) to (30,18)

| dx_ | dy | steps | k | Xincrement | Yincrement | x | y | (xy)
20 10 (20,10)

1 0.8 21 10.8
22 116
23 123

10 8 10

0

1

2

3 24 131 PNPIRE
4 25 139 SR
5 26 147 PNEFEY
6 27 155 NEEAE)

7 28 16.3

8 29 171 NEERED)

9 30 17.9

Bresenham’s Line-Drawing Algorithm for |m
1.
2.

(|

Bresenham’s Line Algorithm

< 1.0

Input the two line endpoints and store the left endpoint in (xg, 1p).

Set the color for frame-buffer position (xy, 1); i.e., plot the first point.

Calculate the constants Ax, Ay, 2Ay, and 2Ay — 2Ax, and obtain the
starting value for the decision parameter as

po = 2Ay — Ax

Ateach x; along the line, starting at k = 0, perform the following test.
It pr < 0, the next point to plotis (x; + 1, i) and

F"k-l'l = Pk + Zﬁ}f
Otherwise, the next point to plotis (x; + 1, 1 + 1) and
Pr+1 = Pr +2Ay —2Ax

Perform step 4 Ax — 1 times.

1 Specified o

. Line Path /
L~

@

10 11 12 13

A section
of a display screen where a
straight-line segment is to be
plotted, starting from the
pixel at column 10 on scan
line 11.

50 é

Specified —
49 " Line Path
48
™~
50 51 52 53

A section
of a display screen where a
negative slope line segment is
to be plotted, starting from
the pixel at column 50 on scan
line 50.

Bresenham’s Line Algorithm

EXAMPLE :(textbook p136-137)
To illustrate the algorithm, we digitize the line with
endpoints (20, 10) and (30, 18).

Draw the line with endpoints (%0,10) and (30, 18).
— Ax=30-20=10, Ay=78-10=8,

— pp=20y— Ax=16-10=6

— 20y=16, and 2Ay - 2Ax=-4

Plot the initial position at (20,10), then

ke Xy Yied) kK P e Yisr) | | |
0 6 2111 ; 6 (26, 15)
| . 22,12) 6 2 (27, 16}
2) (23, 12) 7 2 (28, 16)
s 14 (24, 13) o 14 (29, 17)
3 10 25, 14) 9) (30, 18)

Bresenham’s Line Algorithm
An implementation of Bresenham line drawing for slopes in the range O
<m < 1.0is given in the following procedure

#finclude <stdlib.h>
#include <math.h>

/* Bresenham line-drawing procedure for |m| < 1.0. =/,
void lineBres (dint x0, 4int 0. int =End., dint yEnd)
|
int dx = fabs (xEnd - =0),. dy = fabs{yEnd - 0};
int p = 2 * dy - d=x=:
int tweDy = 2 * dy, twoDyMinusDx = 2 * (dy - d=);
int =. ¥;

/* Determine which endpoint to use as =start peosition. *f
if (x0 » x=End) {

= = =FEnd;

v = vEnd;

=End = =0;
1

else (
Xoa—u= 0,3
y = y0:
1

setPixel (x, y):

while (x < xEnd) {
x++;
if (p < 0)
p t= twoDy;
else {
yt+t:
p t= twoDyMinusDx;
3
setPixel (x, ¥y):;

Lecture Three
Graphics Output Primitives

Circle drawing algorithms

Properties of Circles

A circle (Figure) is defined as the set of points that are all at a given distance r
from a center position (x., 1) .

2

(x—x) 4+ W—y)=r (1)

=1 V12— (x —x)7? (2)

Circle with
center coordinates (x,, y.) and
radius r.

But this is not the best method for generating a circle.

One problem with this approach is that it involves
considerable computation at each step. Moreover, the
spacing between plotted pixel positions is not uniform, as

Upper demonstrated in Figure
half of a circle plotted
with Eq. 2 and with

I[IL': }fL} = {[}r D}

Expressing the circle equation in parametric polar form yields the pair of equations

X = X, +rcosf

. (3)
Y = Y +rsinf

=y 0| 0.%) When a display is generated with these
R /. equations using a fixed angular step size,
| (4> 1Y a circle is plotted with equally spaced
- _1_]\ points along the circumference
=y, =0 T O %)

| o 8

The shape of the circle is similar in each quadrant.
) Therefore, if we determine the curve positions in
e Caleula RO the first quadrant, we can generate the circle
circle point (x, y)inone octant gection in the second quadrant of the xy plane by
yields the circle points shown))))
for the other seven octants. noting that the two circle sections are symmetric
with respect to the y axis.
And circle sections in the third and fourth
guadrants can be obtained from sections in the
first and second quadrants by considering

symmetry about the x axis.

Midpoint Circle Algorithm

The basic idea in this approach is to test the halfway position between two pixels to
determine if this midpoint is inside or outside the circle boundary.

To apply the midpoint method, we define a circle function as

feire(x, y) = x> + 7 — 12 (4)

< 0, 1if(x, y) is inside the circle boundary

farc(x, y) < =0, if(x, y) is on the circle boundary

=0, if (x, y)is outside the circle boundary

The tests in (5) are performed for the mid positions between
pixels near the circle path at each sampling step.

Assuming that we have just plotted the pixel at (¥, ¥). we next
need to determine whether the pixel at position (x; +1, 1) or
the one at position (¥ +1, 1% —1) is closer to the circle. Our
decision parameter is the circle function (4) evaluated at the
midpoint between these two pixels:

Midpoint

. - - LM
x, x,+1x +2

K

Midpoint
between candidate pixels at
sampling position x; + 1
along a circular path.

1
Pk = fcjrc (Ik + 1, Y — E)

2

1 y
= (+ 17+ (}ﬂ- — E) —re

If pr < 0, this midpoint is inside the circle and the pixel on scan line ¥ is closer to the
circle boundary. Otherwise, the midposition is outside or on the circle boundary, and
we select the pixel on scan line 1y —1 .

Successive decision parameters are obtained using incremental calculations.

We obtain a recursive expression for the next decision parameter by evaluating the
circle function at sampling position x4 +1=1x. +2

: 1
Pk+1 = Jeirc (Ik—'l + 1, Yey1 — ;)

.

"

9 1\° ,
= ['lrl"..'; + 1)+]_]" 4 (yﬁ;_] _ _) _ 42
or)

Prs1 = P+ 200+ 1) + {1,:?-+-, — tﬁ} — (W1 — W) + 1 (7)

where yi:1 is either ¥ or iy —1 , depending on the sign of px. .

Increments for obtaining Px+1 are either 2x..,+1 (if Px is negative) or 2x; 1+ 1—-2y;1.
Evaluation of the terms 2x..; and 2y.; can also be done incrementally as

2401 = 20 + 2
Y1 = 2 — 2

(8)

The initial decision parameter is obtained by evaluating the circle function at the start
position (xo, o) = (0,7) from eq.(6):

i 1
Po = _.fcirc (1: F— E)

If the radius r is specified as an integer, we can simply round pj to

po=1-—r (for r an integer)

Midpoint Circle Algorithm

Midpoint Circle Algorithm

Inputradius r and circle center (x;, If-), then set the coordinates for the
first point on the circumference of a circle centered on the origin as

(X0, ¥o) = (0, 1)
Calculate the initial value of the decision parameter as

5

F}.D:i_r

At each x; position, starting at k = 0, perform the following test. If
pr < 0, the next point along the circle centered on (0, 0) is (xz+1, 1) and

Pk+1 = Pk + 2% 1 + 1
Otherwise, the next point along the circle is (x;x + 1, i — 1) and
Pkl = Pk +2%51 + 1 — 21 g
where 2x;,1 = 2x¢ + 2 and 2¥p 41 = 21 — 2.
Determine symmetry points in the other seven octants.

Move each calculated pixel position (x, y) onto the circular path
centered at (x;, 1.) and plot the coordinate values:

X=X+ X, Vy=y-+Y

Repeat steps 3 through 5 until x = y.

Example: Midpoint Circle Drawing

Given a circle radius r = 10, we demonstrate the midpoint circle
algorithm by determining positions along the circle octant in the

first quadrant from x = 0 to x = y. The initial value of the decision
parameter is

po=1—-r=-9

For the circle centered on the coordinate origin, the initial

point is (xo, 1) = (0, 10), and initial increment terms for
calculating the decision parameters are

2xp0 = 0, 21fp = 20

Successive midpoint decision parameter values and the

corresponding coordinate positions along the circle path are listed
in the following table:

k| Pre| (k1 Y1) | 2241 | 2Yk41
0] -9 (1, 10) 2 20
1| -6 (2, 10) 4 20
2 | -1 (3, 10) 6 20
3 6 (4, 9) 8 18
4 | =3 (5, 9) 10 18
5 8 (6, 8) 12 16
6 5 (7,7) 14 14

f#include <GL/glut.h>

class screenPt
{
private:
GLint x, ¥:

publie:
/* Default Constructor: initializes coordinate position to (0, 0). */
screenPt () {
x=y=0;
1
void setCoords (GLint xCoordValue, GLint yCoordValue) {
x = xCoordValue;
y = yCoordValuoe;

1

GLint getx {) conet (
return x;

1

GLint gety () const {
return y;

1

void dincrementx ()
i+

1

void decrementy () |
¥--:

1

void setPixel (GLint xCoord, GLint yCoord)

{
glBegin (GL_POINTS);
glVertex2i (xCoord, yCoord);
glEnd ();
}
void circleMidpoint (GLint xe, GLint ye, GLint radius)
{
gcreenPt circPt;
GLint p = 1 - radius; f] Initial value for midpoint parameter,

circPt.setCoords (0, radius); // Set coordinates for top point of circle,

void circlePlotPoints (GLint, GLint, screenPt);

/* Plot the initial point in each circle quadrant. */
circlePlotPoints (xe, yc, circPt);

/* Calculate next point and plot in each octant, */

while (circPt.getx () € circPt.gety ()) {
circPt.incrementx {);
if (p < 0)
pt= 2 * circPt.getx () + 1;
elge {
circPt.decrementy ();
pt™ 2 * (circPt.getx () - circPt.gety ()) + 1;
}
circlePlotPoints (xc, yec, circPt);

1

void circlePlotPoints (GLint xc, GLint yc, screenPt circPt)
{

getPixel (xc + circPt.getx (), yc + circPt.gety ());
getPixel (xc - circPt.getx (), yc + circPt.gety ());
getPixel (xc + circPt.getx (), yc - circPt.gety ());
getPixel (x¢ - circPt.getx (), yc - circPt.gety ());
getPixel (=xc + circPt.gety (), yc + circPt.getx ());
getPixel (xc - circPt.gety (), yc + circPt.getx ());
getPixel (xc + circPt.gety (), yc - circPt.getx ());
getPixel (xc - circPt.gety (), yc - circPt.getx ());

Lecture Four
Graphics Output Primitives

ELLIPSE-GENERATING ALGORITHMS

Properties of Ellipses

A precise definition of an ellipse can be given in terms of the distances from
any point on the ellipse to two fixed positions, called the foci of the ellipse.

dy 4+ d> = constant (1)

Expressing distances d; and d,

V(X —x1)2+ (¥ — 11)? + vV (x — 12)2 + (y —)2 = constant
The general ellipse equation in the form

AX* + By +Cxy+Dx+Ey+F=0

YA

=Y

Ellipse
generated about foci Fy
and F».

The major axis is the straight-line segment extending from
one side of the ellipse to the other through the foci. The
minor axis spans the shorter dimension of the ellipse.

=

The equation for the ellipse

2 2
X — X Y — 1
L _|_ Py o b — 1 1
(?'_1.) (r.|l,l) () Vo 4+ /

Using polar coordinates rand 6

The
bounding circle and eccentric
| angle # for an ellipse with

X = X + rycosf
. (2)
i = Y. +1,sinf Ellipse
- - b centered at (x¢, y) with
If r,>r,, the radius of the bounding circle is r=r,. semimajor axis ry and

) i) i semiminor axis Ty A
Otherwise, the bounding circle has radius r =r,,.

. . . : . [n])
As with the circle algorithm, symmetry considerations can be [I,
1 - I -
used to reduce computations. An ellipse in standard position is ll'\ *
symmetric between quadrants, but, unlike a circle, it is not (—x —)% /H.)
x 8 | Sl

symmetric between the two octants of a quadrant. Thus, we
must calculate pixel positions along the elliptical arc throughout
one quadrant, then use symmetry to obtain curve positions in
the remaining three quadrants

Midpoint Ellipse Algorithm

Given parameters r, , r,, and (x., y.), we determine curve positions (x, y) for an ellipse
in standard position centered on the origin, then we shift all the points using a fixed
offset so that the ellipse is centered at (x., y.). If we wish also to display the ellipse in
nonstandard position, we could rotate the ellipse about its center coordinates to
reorient the major and minor axes in the desired directions.

The midpoint ellipse method is applied throughout the first quadrant in two parts.

Regions 1 and 2 (Figure) can be processed in various ways.
We can start at position (0, r,) and step clockwise along the Slope = —1
elliptical path in the first quadrant, shifting from unit steps in /7 Regiod

x to unit steps in y when the slope becomes less than -1.0. (g '|;L.:_;i. n
Alternatively, we could start at (r,, 0) and select points in a l&] £
counterclockwise order, shifting from unit steps in y to unit /
steps in x when the slope becomes greater than -1.0. With \
parallel processors, we could calculate pixel positions in the
two regions simultaneously. As an example of a sequential _____ |
implementation of the midpoint algorithm, we take the start processing I.Egmnfgﬁ?
position at (0, r,) and step along the ellipse path in clockwise region 1, the magnitude of the

. A Ti S0 A q .___ :]
order throughout the first quadrant. ellipse slope is less than 1.0;
over region 2, the magnitude

of the slope is greater than 1.0.

We define an ellipse function from Equation (2) with (x., y.) = (0, 0) as

70 70 R |
fettipse (X, Y) =1, X"+ 13y — 131y
which has the following properties:

< 0, if (x, y) is inside the ellipse boundary
fmupse{,‘r, y) ¢ =0, if (x, y) is on the ellipse boundary

= 0, if (x, y) is outside the ellipse boundary

(3)

(4)

Starting at (0, r,), we take unit steps in the x direction until we reach the
boundary between region 1 and region 2. Then we switch to unit steps in the y
direction over the remainder of the curve in the first quadrant. At each step we
need to test the value of the slope of the curve. The ellipse slope is calculated

from Equation (3) as

dy 2ryx (5)

dx — 2rZy

At the boundary between region -1 and region 2 dy/dx = —1.0
and

27“2,,\‘ = 2riy
_— (6)

Therefore, we move out of region 1 whenever

), 2
2rex >2r:yY

e e v I
roxe S~ e 0

&
v, — 1 midpoint

™
\
X, x, +1
Midpoint

between candidate pixels at
sampling position xx + 1
along an elliptical path.

The decision parameter (that is, the ellipse function 3) at this midpoint:

. 1
})1;\- = _fellip;\‘e (-\‘k +1, Yk — ;)

—_—

2 S N 1 - _—
T e (}/.'« = ;) — 1Ty

e

(7)

If p1,< 0, the midpoint is inside the ellipse and the pixel on scan line y,is closer to the
ellipse boundary. Otherwise, the midposition is outside or on the ellipse boundary, and

we select the pixel on scan line y, — 1.

At the next sampling position (x,,;+ 1 = x,+ 2), the decision parameter for region 1 is

evaluated as

Plis1 = felipse (-\';;—1 +L -3

~

1

> PR

()

=r2[(x +1) + 1]% + rf(t/ﬂl - —) — 1,7y
") | (8)

or

Pl = ple + 2/'5(.\1. Y ,'}3/ Jip

(]/i:—l —

1\° &'
2] T\

where y,,, is either y, or y, — 1, depending on the sign of p1,.

Decision parameters are incremented by the following amounts:

2, 2 .
_ Zr;.\'kq + 71y if ply <0
mcrement = (9)
2 2 v .
2r X1 + 1y — 2y Y1, U ple >0

At the initial position (0, r,), these two terms evaluate to
2rixy =0
!) (10)
2ryy = 2ryry

In region 1, the initial value of the decision parameter is obtained by evaluating the
ellipse function at the start position (x, yo) = (0, r,):
rixc+rhy - rliri=0
\/ |

1 Y
Plﬂ = ﬁ:llips-r: (1; Fy — _)
2 ve — 1 [l . .
) i 1 2 . i | “midpoint
=F,+r |\ Fty— = | —1,.T,
y 2 (v 2) x'y (11) X, x Ll 42
or
Midpoint
_ P 5 1, between candidate pixels at
plo = Py —Txly + ? ¥ sampling position y — 1

along an elliptical path.

— 7'2
Y (xk+1 + 1)2
+
r2 g —1
) e
1)?
22
xr

2

Example: Midpoint Ellipse Drawing (Textbook P114-115)

Given input ellipse parameters r, = 8 and r, = 6, we illustrate the steps in the midpoint
ellipse algorithm by determining raster positions along the ellipse path in the first
quadrant. Initial values and increments for the decision parameter calculations are

rex =10 (with increment 2ry = 72)
iy =2r;ry (with increment —2r; = —128)

For region 1, the initial point for the ellipse centered on the origin is
(xn, o) = {0, 6), and the initial decision parameter value is

|
ply = r; — .rfr_, + Irf = —3A32
Surresalve mid |J-|'|Zi|:'l|! declﬁjlm-p-arame'ler values and the pjxel |_'!-|'|!-i-j‘|.i|.'!|t1;-'. al-nn_g

the ellipse are listed in the following table:

k| ple | (e, we1) | 2rgxeqn | 2rgie
0| —332 (1, 6] 72 768
1| —224 (2. 6) 144 763
2| —a4 (3, 6) 214 768
3| 208 (4, 5) 283 &4
4| —108 (5, 5) 364 &4
5| 288 (6, 4) 432 512
6| 244 (7. 3) S04 354

We now move oul of region 1 because Erix = 2riy.

For region 2, the initial point is (X, W) =(7,3) and the initial decision
parameter is

2

P20 = Fulipns (? 3, 1:] = 151

The remaining positions along the ellipse path in the first quadrant are then

calculated as
P2, | (ike1, Whs1) El"i-’ﬂ: #1 | 2riikst
o | —15] (B, Z} 376 256
1 133 (B, 1} 376 128
i 5 (B, O} — —
A plot of the calculated positions for the ellipse within the first quadrant is
shown in Figure 23.
|
i
5
4
5
; FIGURE 23
Pixel positiors along an elbptcal path centered or the crigin
a with 7, = B and r, = 6, using the midpeint akeerithm 1o
¢ 1 2 3 4 5 6 8

caloudate kcatiors within the frst guadear.

End of Lecture
Good Luck!

See you
in next lecture...

L
0@ 006

